skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gaynor, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Polishing of additively manufactured products is a multi-stage process, and a different combination of polishing pad and process parameters is employed at each stage. Pad change decisions and endpoint determination currently rely on practitioners’ experience and subjective visual inspection of surface quality. An automated and objective decision process is more desired for delivering consistency and reducing variability. Toward that objective, a model-guided decision-making scheme is developed in this article for the polishing process of a titanium alloy workpiece. The model used is a series of Gaussian process models, each established for a polishing stage at which surface data are gathered. The series of Gaussian process models appear capable of capturing surface changes and variation over the polishing process, resulting in a decision protocol informed by the correlation characteristics over the sample surface. It is found that low correlations reveal the existence of extreme roughness that may be deemed surface defects. Making judicious use of the change pattern in surface correlation provides insights enabling timely actions. Physical polishing of titanium alloy samples and a simulation of this process are used together to demonstrate the merit of the proposed method. 
    more » « less